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A method to implement the optimal decentralized Kalman filter and the optimal decentralized Lainiotis
filter is proposed; the method is based on the a priori determination of the optimal distribution
of measurements into parallel processors, minimizing the computation time. The resulting optimal
Kalman filter and optimal Lainiotis filter require uniform distribution or near to uniform distribution
of measurements into parallel processors. The optimal uniform distribution has the advantages of
elimination of idle time for the local processors and of low hardware cost, but it is not always applicable.
The optimal filters present high parallelism speedup; this is verified through simulation results and is
very important due to the fact that, in most real-time applications, it is essential to obtain the estimate
in the shortest possible time.
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1. Introduction

Estimation plays an important role in many fields of science
and engineering. The discrete time Kalman filter [1] and Lainio-
tis filter [2] are well-known algorithms that solve the estimation
problem. Real time problems require fast and accurate computa-
tion of large amount of data in order to deal with larger and
more realistic models. The advances in the technology of inte-
grated multi-sensor network systems allow the use of distributed
or decentralized signal processing algorithms. The literature is very
rich of contributions addressing several aspects of distributed or
decentralized estimation.

There are several works in literature that address several as-
pects of distributed estimation. These works can be classified
works into classes based on the modeling adopted: static versus
dynamic estimation, distributed versus hierarchical estimation, and
all-to-all versus multi-hop communication networks. A distributed
Kalman filter presented in [3,4], wherein a system with an m-
dimensional measurement vector is first split into subsystems of
measurement sub-vectors, then these subsystems are individually
processed by micro Kalman filters in the nodes of the network.
In this system, the sensors compute an average inverse covariance
and average measurements using consensus filters. These averaged
values are then used by each node to individually compute the
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estimated state of the system using the information form of the
Kalman filter. The distributed Kalman filtering algorithms are based
on an average-consensus computing first the mean of the sensor
measurements, and then to update and predict the local estimates
using the centralized Kalman optimal gains; the Kalman Consensus
Filter or the Generalized Kalman Consensus Filter are distributed
algorithms for fusing multiple measurements from different sen-
sors as stated in [3,5–7].

Decentralized Kalman filtering and distributed Kalman filtering
are two separate problems. The decentralized Kalman filter was in-
troduced in [8]. There are several works in literature that propose
decentralized versions of the Kalman filter [9–16]. Fusion cen-
ter (FC) based WSNs can perform decentralized estimation [15,16].
Decentralized estimation of Gaussian random parameters is pre-
sented in [10] for stationary environments and decentralized esti-
mation of random signals in arbitrary nonlinear and non-Gaussian
setups is presented in [12]. A comparison between the distributed
Kalman filter and the decentralized sensor fusion algorithms both
with and without fusion centers is presented in [17–19].

There are two major approaches to obtain the required esti-
mates for such multiple-sensor systems as stated in [20]: (i) The
centralized approach, where all the sensor observations are trans-
mitted from the local sensor to a central location for processing,
using Kalman filter [1,21–23] or Lainiotis filter [20,21,24–27]; this
approach requires high computational load at the central pro-
cessor. (ii) The decentralized approach, where the data are ob-
tained by the different sensor subsystems, processed locally and
the results are transmitted to the central processor which com-
bines the information from the local subsystems to produce the
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global estimate. This approach is used in [28–30], where the al-
gorithms used to obtain the estimates are based on the different
Kalman filter formulations (standard covariance-type Kalman fil-
ter, information-type Kalman filter, square root Kalman filter) and
a formulation of the Lainiotis per-step partitioning filter was pre-
sented in [24].

In this paper we use the ideas in [21,28,31] in order to parti-
tion the measurement noise process into statistically uncorrelated
parts. A typical multi-sensor environment consists of several sen-
sors observing a dynamic system, where each sensor is attached to
a local processor; in these decentralized structures some amount
of processing is done at the local processors of the network and
the results are then communicated to a central processor, also re-
ferred to as a fusion center. The hierarchical approach for signal
processing is used in the case where the sensors are both collo-
cated and dispersed [28]. The resulting decentralized algorithms
are decomposed into two parts: the local level and the central
level. The data of each local processor is communicated to the
fusion center where the global estimate is computed. The local
processors can operate concurrently, since there is no need for
communication among local processors and no communication is
needed from the central processor downwards in the hierarchy of
the local processors.

In this paper we investigate the problem of decentralized com-
puting is the derivation of the optimal solution to the decentral-
ized problem: the optimal number of processors required for the
parallel implementation of Kalman filter and Lainiotis filter, for
which the maximum parallelism speedup is achieved. The optimal
decentralized Kalman filter and Lainiotis filter have been discussed
in [32] assuming uniform distribution of measurements into the
parallel processors. Concerning the novelty of the paper, we men-
tion that: (i) decentralized implementation of both Kalman and
Lainiotis filters is derived, (ii) a method to implement the optimal
decentralized Kalman and Lainiotis filters is proposed; the method
is based on the a priori determination of the optimal distribution
of measurements into parallel processors, minimizing the compu-
tation time; this means that we are able to design the optimal
sensor network for a given problem, (iii) the optimal distribution
is derived for three separate cases: time varying, time invariant
and steady state; this is significant due to the fact that there is a
difference between the time varying case and the time invariant
and steady state cases concerning the optimal distribution deter-
mination, and (iv) it is pointed out that the optimal distribution
of measurements into parallel processors is not always uniform,
but it can be near to uniform; this leads to maximum parallelism
speedup mainly in cases when the number of measurements has
a small number of dividers, especially when it is a prime num-
ber. The contribution of the paper is that we propose a method for
implementing the optimal decentralized Kalman filter and Lainiotis
filter by a priori determination of the distribution of measurements
into parallel processors.

The paper is organized as follows: In Section 2 the decentral-
ized filtering problem is formulated. In Section 3 the centralized
Kalman filter and Lainiotis filter are presented for time varying,
time invariant and steady state systems. In Section 4 the decentral-
ized Kalman filter and Lainiotis filter are derived for time varying,
time invariant and steady state systems. In Section 5 the computa-
tional requirements of both centralized and decentralized filtering
algorithms are calculated. In Section 6 the optimal decentralized
Kalman filter and Lainiotis filter are defined. First, the optimal the-
oretical uniform distribution is determined, but it is not always ap-
plicable. In the sequel, the optimal uniform distribution is derived,
but it is not always applicable as well. Then, the optimal general
distribution is derived: it is a uniform distribution or a near to
uniform distribution with high parallelism speedup. In Section 7
simulation results are presented. Finally, Section 8 summarizes the
conclusions.

2. Problem formulation

The estimation/filtering problem is associated with the follow-
ing state space equations:

x(k + 1) = F (k + 1,k)x(k) + w(k) (1)

z(k) = H(k)x(k) + v(k) (2)

where x(k) is the n-dimensional state vector at time k, z(k) is the
m-dimensional measurement vector, F (k + 1,k) is the n × n sys-
tem transition matrix, H(k) is the m × n output matrix, {w(k)}
is the plant noise process and {v(k)} is the measurement noise
process. These processes are assumed to be Gaussian, zero-mean,
white and uncorrelated random processes with n × n plant noise
and m ×m measurement noise covariance matrices Q (k) and R(k),
respectively. The initial value x(0) of the state vector x(k) at time
k = 0 is considered as Gaussian random variable with mean x0 and
covariance P0. Also, x(0), {w(k)} and {v(k)} are independent.

For a multi-sensor environment, the measurement vector is par-
titioned into ρ parts [21,28,31]:

zT (k) = [
zT

1 (k) zT
2 (k) . . . zT

ρ(k)
]

(3)

where zi(k) is the mi-dimensional vector for every i = 1,2, . . . , ρ
and it holds:
ρ∑

i=1

mi = m (4)

Partitioning the measurement noise process into ρ statistically un-
correlated parts as

vT (k) = [
vT

1 (k) vT
2 (k) . . . vT

ρ(k)
]

(5)

the measurement noise covariance matrix is given by

E
[
v(k)vT (k)

] = diag
(

R1(k), R2(k), . . . , Rρ(k)
)

(6)

where Ri(k) is the mi ×mi (measurement noise) covariance matrix
and partitioning the output matrix as

H T (k) = [
H T

1 (k) H T
2 (k) . . . H T

ρ(k)
]

(7)

where Hi(k) is the corresponding mi × n submatrix of H(k), the
measurement equation takes the form:

zi(k) = Hi(k)x(k) + vi(k), i = 1,2, . . . , ρ (8)

3. Centralized Kalman filter and Lainiotis filter

In this section we present the discrete time Kalman filter [1]
and the discrete time Lainiotis filter [2] in a centralized form. This
means that all the required computations are carried out in one
central processor.

For time varying systems, the classical implementation of the
Kalman filter is summarized in the following equations:

Kalman filter

x(k + 1/k) = F (k + 1,k)x(k/k) (9)

P (k + 1/k) = F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k) (10)

K (k + 1) = P (k + 1/k)H T (k + 1)
[

H(k + 1)P (k + 1/k)

× H T (k + 1) + R(k + 1)
]−1

(11)

x(k + 1/k + 1) = x(k + 1/k) + K (k + 1)
[
z(k + 1)

− H(k + 1)x(k + 1/k)
]

(12)

P (k + 1/k + 1) = P (k + 1/k) − K (k + 1)H(k + 1)

× P (k + 1/k) (13)
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Lainiotis filter

A(k + 1) = [
H(k + 1)Q (k)H T (k + 1) + R(k + 1)

]−1
(14)

Kn(k + 1) = Q (k)H T (k + 1)A(k + 1) (15)

Km(k + 1) = F T (k + 1,k)H T (k + 1)A(k + 1) (16)

Pn(k + 1,k) = Q (k) − Kn(k + 1)H(k + 1)Q (k) (17)

Fn(k + 1,k) = F (k + 1,k) − Kn(k + 1)H(k + 1)F (k + 1,k) (18)

O n(k + 1) = Km(k + 1)H(k + 1)F (k + 1,k) (19)

xn(k + 1/k + 1) = Kn(k + 1)z(k + 1) (20)

Mn(k + 1) = Km(k + 1)z(k + 1) (21)

P (k + 1/k + 1) = Pn(k + 1,k) + Fn(k + 1,k)

× [
I + P (k/k)O n(k + 1)

]−1

× P (k/k)F T
n (k + 1,k) (22)

x(k + 1/k + 1) = xn(k + 1/k + 1) + Fn(k + 1,k)

× [
I + P (k/k)O n(k + 1)

]−1

× [
P (k/k)Mn(k + 1) + x(k/k)

]
(23)

The equivalence of the two filters is confirmed in [33]. Hence,
using only the equations of Kalman filter, (10)–(11) in (13) and
(9)–(11) in (12), the following implementation of the centralized
time varying Kalman filter/Lainiotis filter is derived, as shown in
Appendix A.

Centralized time varying Kalman filter/Lainiotis filter

P (k + 1/k + 1) = {[
F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k)

]−1

+ H T (k + 1)R−1(k + 1)H(k + 1)
}−1

(24)

x(k + 1/k + 1) = P (k + 1/k + 1)
{

H T (k + 1)R−1(k + 1)z(k + 1)

+ [
F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k)

]−1

× F (k + 1,k)x(k/k)
}

(25)

For time invariant systems, the system transition matrix, the
output matrix, the plant and measurement noise covariance matri-
ces are constant, following the similar way as (24)–(25) the cen-
tralized time invariant Kalman filter/Lainiotis filter is obtained:

Centralized time invariant Kalman filter/Lainiotis filter

P (k + 1/k + 1) = {[
F P (k/k)F T + Q

]−1 + H T R−1 H
}−1

(26)

x(k + 1/k + 1) = P (k + 1/k + 1)
{

H T R−1z(k + 1)

+ [
F P (k/k)F T + Q

]−1
F x(k/k)

}
(27)

where the constant matrices H T R−1 and H T R−1 H are calculated
off-line.

For time invariant systems, it is well known [34] that if the sig-
nal process model is asymptotically stable (i.e. all eigenvalues of F
lie inside the unit circle), then there exists a steady state value P e

of the estimation error covariance matrix, which is calculated off-
line by

P e = [I − K H]P p (28)

where the steady state gain K is calculated by

K = P p H T [
H P p H T + R

]−1
(29)
and the steady state prediction error covariance matrix P p is cal-
culated off-line by off-line solving of the corresponding discrete
time Riccati equation [34,35]:

P p = Q + F P p F T − F P p H T [
H P p H T + R

]−1
H P p F T (30)

Then, the centralized steady state Kalman filter/Lainiotis filter is
obtained:

Centralized steady state Kalman filter/Lainiotis filter

x(k + 1/k + 1) = Assx(k/k) + Bssz(k + 1) (31)

where the following constant matrices are calculated off-line:

Ass = [I − K H]F (32)

Bss = K (33)

4. Decentralized Kalman filter and Lainiotis filter

In this section we present the discrete time Kalman and Laini-
otis filters in a decentralized form [28]. As was pointed out earlier,
the main drawback of the above centralized approaches is that
they require a large amount of computations to be carried out
in the central processor, demanding therefore large computational
power. Moreover in the case of very large m, there is a tremen-
dous computational burden in the processor. In the following, the
results of the previous section are extended and the corresponding
decentralized algorithms are decomposed into two parts: the local
level and the central level. At the local level each processor com-
putes its local quantities using its own measurement. The data of
each local processor is communicated to the fusion center where
the global estimate is computed. The local processors can operate
concurrently, since there is no need for communication among lo-
cal processors and no communication is needed from the central
processor downwards in the hierarchy of the local processors. The
generation of the global estimate can be thought of as overhead,
due to the fact that the central processor needs information from
the local processors, but not vice versa.

Using the formulas of the matrices in (6), (7) and (3), we have

H T (k + 1)R−1(k + 1)H(k + 1)

=
ρ∑

i=1

H T
i (k + 1)R−1

i (k + 1)Hi(k + 1) (34)

H T (k + 1)R−1(k + 1)z(k + 1)

=
ρ∑

i=1

H T
i (k + 1)R−1

i (k + 1)zi(k + 1) (35)

which allow us through Eqs. (24)–(25) to derive the following
implementation of the decentralized time varying Kalman fil-
ter/Lainiotis filter:

Decentralized time varying Kalman filter/Lainiotis filter

Local level

Bi(k + 1) = H T
i (k + 1)R−1

i (k + 1)Hi(k + 1), i = 1, . . . , ρ (36)

bi(k + 1) = H T
i (k + 1)R−1

i (k + 1)zi(k + 1), i = 1, . . . , ρ (37)

Central level

P (k + 1/k + 1) =
[[

F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k)
]−1

+
ρ∑

Bi(k + 1)

]−1

(38)

i=1
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x(k + 1/k + 1) = P (k + 1/k + 1)

{
ρ∑

i=1

bi(k + 1)

+ [
F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k)

]−1

× F (k + 1,k)x(k/k)

}
(39)

For time invariant systems, the following implementation of the
decentralized time invariant Kalman filter/Lainiotis filter is derived:

Decentralized time invariant Kalman filter/Lainiotis filter

Local level

bi(k + 1) = H T
i R−1

i zi(k + 1), i = 1, . . . , ρ (40)

where H T
i R−1

i , i = 1, . . . , ρ , are constant matrices calculated off-
line.

Central level

P (k + 1/k + 1) =
[[

F P (k/k)F T + Q
]−1 +

ρ∑
i=1

Bi

]−1

(41)

x(k + 1/k + 1) = P (k + 1/k + 1)

{
ρ∑

i=1

bi(k + 1)

+ [
F P (k/k)F T + Q

]−1
F x(k/k)

}
(42)

where Bi , i = 1, . . . , ρ , and
∑ρ

i=1 Bi , are constant matrices calcu-
lated off-line by

Bi = H T
i R−1

i Hi, i = 1, . . . , ρ (43)

In the steady state case the following implementation of the
decentralized steady state Kalman filter/Lainiotis filter is derived:

Decentralized steady state Kalman filter/Lainiotis filter

Local level

di(k + 1) = P e H T
i R−1

i zi(k + 1), i = 1, . . . , ρ (44)

where the constant matrices P e H T
i R−1

i , i = 1, . . . , ρ , are calculated
off-line by the steady state value P e of the estimation error co-
variance matrix using (28), that is calculated by the steady state
value P p from the solving of Eq. (30) and the steady state gain K
from (29).

Central level

x(k + 1/k + 1) = Assx(k/k) +
ρ∑

i=1

di(k + 1) (45)

where the constant matrix Ass is calculated off-line using (32).

5. Computational requirements

The centralized and the decentralized Kalman filters and Lain-
iotis filters are recursive algorithms. The computational times re-
quired for the implementation of the centralized algorithms are:

T C
TV = BC

TV · s · top, T C
TI = BC

TI · s · top, T C
SS = BC

SS · s · top

(46)

and the computational times required for the implementation of
the decentralized algorithms are:
Table 1
Calculation burden of matrix operations.

Matrix operation Calculation burden

A(n × m) + B(n × m) = C(n × m) nm
A(n × n) + B(n × n) = S(n × n) [S: symmetric] 0.5n2 + 0.5n
I(n × n) + A(n × n) = B(n × n) [I: identity] n
A(n × m) · B(m × k) = C(n × k) 2nmk − nk
A(n × m) · B(m × n) = S(n × n) [S: symmetric] n2m + nm − 0.5n2 − 0.5n
[A(n × n)]−1 = B(n × n) (16n3 − 3n2 − n)/6

T D
TV = B D

TV · s · top, T D
TI = B D

TI · s · top

T D
SS = B D

SS · s · top (47)

where

• BC
TV , BC

TI , BC
SS are the per recursion calculation burden required

for the on-line calculations of the centralized time varying,
time invariant, steady state algorithms, respectively,

• B D
TV , B D

TI , B D
SS are the per recursion calculation burden required

for the on-line calculations of the decentralized time varying,
time invariant, steady state algorithms, respectively,

• s is the number of recursions (steps) that each algorithm exe-
cutes,

• top is the time required to perform a scalar operation.

The centralized and the decentralized algorithms presented above
are equivalent with respect to their behavior: they calculate the-
oretically the same estimates. Then, it is reasonable to assume
that both implementations compute the estimate value x(L/L) of
the state vector x(L), executing the same number of recursions.
Thus, in order to compare the algorithms with respect to their
computational time, we have to compare their per recursion calcu-
lation burden required for the on-line calculations; the calculation
burden of the off-line calculations (initialization process for time
invariant and steady state filters) is not taken into account.

The computational analysis is based on the analysis in [33]:
scalar operations are involved in matrix manipulation operations,
which are needed for the implementation of the filtering algo-
rithms. Table 1 summarizes the calculation burden of needed ma-
trix operations.

In the centralized algorithms case, all required computations for
the calculation of the global estimate are carried out in one cen-
tral processor. The computational requirements of all centralized
algorithms depend on the state vector dimension n and the mea-
surement vector dimension m.

In the decentralized algorithms case, each local processor com-
putes its local data using its own measurement (the local proces-
sors operate in parallel, since there is no need for communication
among local processors). The data of each local processor is com-
municated to the central processor (there is no two way commu-
nication between the local and the central processor), where the
global estimate is computed. The computational requirements of
all decentralized algorithms depend on the state vector dimension
n and the maximum local measurement vector dimension M:

M = max{mi}, i = 1, . . . , ρ (48)

The per recursion calculation burdens of all the Kalman/Lainiotis
filtering algorithms are determined in Appendix B and summarized
in Table 2.

It is obvious that when ρ = 1 and M = m, then the decen-
tralized algorithms become the same as the centralized algorithms
with equivalent calculation burdens.
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Table 2
Computational requirements. Per recursion calculation burden of the Kalman/Lainiotis filtering algorithms.

Implementation System Calculation burden

Centralized Time varying BC
TV = (31n3 + 6n2 − 7n)/3 + (16m3 − 3m2 − m)/6 + n2m + 2nm + 2nm2

Centralized Time invariant BC
TI = 2nm + (62n3 + 15n2 − 11n)/6

Centralized Steady state BC
SS = 2n2 + 2nm − n

Decentralized Time varying B D
TV = (62n3 + 9n2 − 23n)/6 + (16M3 − 3M2 − M)/6 + n2 M + 2nM + 2nM2 + (n2 + 3n)ρ/2

Decentralized Time invariant B D
TI = 2nM + nρ + (62n3 + 15n2 − 17n)/6

Decentralized Steady state B D
SS = 2n2 − 2n + 2nM + nρ
6. Optimal decentralized Kalman filter and Lainiotis filter
definition

In this section, a method to define the optimal decentralized
Kalman and Lainiotis filters is proposed. Our aim is to minimize
the computation time of the decentralized filter. From the previous
section, it becomes obvious that in order to minimize the compu-
tation time of the decentralized algorithm, we have to minimize
the corresponding per recursion calculation burden. From Table 2
we can easily see that the calculation burden of the decentralized
Kalman filter/Lainiotis filter depends on the distribution of m mea-
surements into ρ parallel local processors. Each local processor can
transfer data to the central processor after its local data is com-
puted in the local processor; this communication process can be
performed while the other local processors compute their local es-
timates. The global estimate is computed in the central processor
after all needed information is transferred from the local proces-
sors to the central processor.

(i) Theoretical uniform distribution. We examine the uniform dis-
tribution of measurement into parallel processors. We make the
following assumption: The measurement vector is partitioned into
ρ equal parts. Then, it is clear that the following relation holds

mi = M, i = 1, . . . , ρ (49)

and then by (4) we have:

ρ · M = m (50)

This uniform distribution of measurements into local processors
has the following advantages:

1. All local processors perform the same calculations concern-
ing quantities of the same type and dimensionality. Thus, all
local processors have the same structure and therefore, low
hardware cost is required for the implementation of the de-
centralized algorithms.

2. There is no idle time for the local processors.

It is obvious that when ρ = 1 and M = m, then the decentral-
ized algorithms become the same as the centralized algorithms (all
measurements into one processor).

It is also obvious that when ρ = m and M = 1, then the de-
centralized algorithms use measurements fully decentralized (one
measurement per processor).

In order to determine the optimal theoretical uniform decen-
tralized Kalman filter/Lainiotis filter, we observe that ρ and M
must be positive integers satisfying (50). From Table 2 we con-
clude that we are able to determine the optimal uniform distribu-
tion of m measurements into ρth

opt processors, each one of which

deals with Mth
opt measurements, using the optimality criterion of

minimizing the computation time of the decentralized Kalman fil-
ter/Lainiotis filter.

For time varying systems, the calculation burden of the de-
centralized Kalman filter/Lainiotis filter B D

TV can be written as a
function of ρ , M , denoted fTVF(ρ), fTVF(M), and given by:
fTVF(ρ) = 1

6

(
16m3

ρ3
− 3m2

ρ2
− m

ρ
+ 62n3 + 9n2 − 23n

)

+ (
n2 + 2n

)m

ρ
+ 2n

m2

ρ2
+ n2 + 3n

2
ρ

fTVF(M) = 1

6

(
16M3 − 3M2 − M + 62n3 + 9n2 − 23n

)
+ (

n2 + 2n
)
M + 2nM2 + m(n2 + 3n)

2M
(51)

The first and second derivatives of fTVF(ρ), fTVF(M) with respect
to ρ , M are:

f ′
TVF(ρ)

= −8m3

ρ4
− m2(4n − 1)

ρ3
− m(n2 + 2n − 1

6 )

ρ2
+ n2 + 3n

2

f ′
TVF(M)

=
(

8M2 + (4n − 1)M − 1

6

)
+ (

n2 + 2n
) − m(n2 + 3n)

2M2
(52)

f ′′
TVF(ρ) = 32m3

ρ5
+ 3m2(4n − 1)

ρ4
+ 2m(n2 + 2n − 1

6 )

ρ3

f ′′
TVF(M) = 16M + 4n − 1 + m(n2 + 3n)

M3
(53)

Then, it becomes clear (from the first and the second derivatives)
that the function fTVF(ρ) for ρ > 0 has a unique minimum value
at ρth

opt and the function fTVF(M) for M > 0 has a unique minimum

value at Mth
opt determined by solving:

3
(
n2 + 3n

)
ρ4 − (

6n2 + 12n − 1
)
mρ2 − (24n − 6)m2ρ

− 48m3 = 0

48M4 + (24n − 6)M3 + (
6n2 + 12n − 1

)
M2

− 3m
(
n2 + 3n

) = 0 (54)

For time invariant and for steady state systems, the calculation bur-
den of the decentralized Kalman filter/Lainiotis filter B D

TI and B D
SS

can be written as a function of ρ, M , denoted fTIF(ρ), fTIF(M) and
fSSF(ρ), fSSF(M), and given by:

fTIF(ρ) = 2nm

ρ
+ nρ + 62n3 + 15n2 − 17n

6

fTIF(M) = 2nM + nm

M
+ 62n3 + 15n2 − 17n

6
(55)

and

fSSF(ρ) = 2nm

ρ
+ nρ + 2n2 − 2n

fSSF(M) = 2nM + nm + 2n2 − 2n (56)

M
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The first and second derivatives of the above functions with re-
spect to ρ , M are:

f ′
TIF(ρ) = f ′

SSF(ρ) = −2nm

ρ2
+ n

f ′
TIF(M) = f ′

SSF(M) = − nm

M2
+ 2n (57)

f ′′
TIF(ρ) = f ′′

SSF(ρ) = 4nm

ρ3

f ′′
TIF(M) = f ′′

SSF(M) = 2nm

M3
(58)

Then, it becomes clear (from the first and the second derivatives)
that the functions fTIF(ρ) and fSSF(ρ) for ρ > 0 have a unique
minimum value at ρth

opt and the functions fTIF(M) and fSSF(M) for

M > 0 have a unique minimum value at Mth
opt determined by solv-

ing:

ρ2 = 2m

M2 = m

2
(59)

Thus, the optimum theoretical uniform distribution is determined
theoretically by solving (54) for time varying systems or (59) for
time invariant or steady state systems; the optimum distribution
consists of ρth

opt processors with Mth
opt measurements in each of

them. It is obvious that these theoretical solutions hold for m > 1;
in fact, when m = 1, then ρth

opt = 1 and Mth
opt = 1.

(ii) Uniform distribution. The above theoretical solution has the
disadvantage that it is not always applicable. In fact, it is obvious
that ρth

opt and Mth
opt have to be positive integers; but the theoretical

solutions by (54) or (59) are real numbers in general. If these the-
oretical values are integers, then they define the unique optimal
uniform distribution: ρu

opt processors with Mu
opt measurements in

each of them. If they are not integers, then we have to seek all
the uniform distributions minimizing the computation time using
fTVF(ρ) or fTVF(M) for time varying systems, fTIF(ρ) or fTIF(M) for
time invariant systems and fSSF(ρ) or fSSF(M) for steady state sys-
tems in order to a priori define the optimal uniform decentralized
Kalman filter/Lainiotis filter. Then, there exists either one optimal
uniform distribution minimizing the computational cost consisting
of ρu

opt processors with Mu
opt measurements in each of them, or

two optimal uniform distributions, because it is possible that there
exist two integer values M1u

opt < Mth
opt < M2u

opt and two integer val-

ues ρ1u
opt < ρth

opt < ρ2u
opt minimizing the computational cost. In the

case where there exist two optimal uniform distributions, then we
propose to define the optimum distribution with criterion the min-
imum number of processors in order to minimize the hardware
cost.

(iii) General distribution (uniform or non-uniform). The uniform
distribution has the disadvantage that it is not always applica-
ble; for example when the number of measurements m has a
small number of dividers, especially when it is a prime number.
In the following we examine the case of general (uniform or non-
uniform) distributions of measurements into processors.

So we have to seek all the distributions (uniform or non-
uniform) of measurements into processors minimizing the com-
putation time using fTVF(ρ) or fTVF(M) for time varying sys-
tems, fTIF(ρ) or fTIF(M) for time invariant systems and fSSF(ρ) or
fSSF(M) for steady state systems in order to a priori define the op-
timal uniform decentralized Kalman filter/Lainiotis filter. From the
previous analysis, it becomes obvious that there exist either one or
two optimal uniform distributions minimizing the computational
Table 3
Percent speedup gain from optimal uniform distribution to optimal general distri-
bution.

System Maximum gain (%) Average gain (%)

Steady state 253.571 9.614
Time invariant 186.842 0.649
Time varying 58.199 1.589

cost. Furthermore, it is possible that there exist non-uniform dis-
tributions (in fact near to uniform distributions) consisting of ρ

g
opt

processors with M g
opt measurements in each of them, which also

minimize the computational cost as well.
In the case where there exist many optimal uniform or non-

uniform distributions, which minimize the computational cost,
then we propose to define the optimum distribution with crite-
rion the minimum number of processors in order to minimize the
hardware cost; of course, the physical topology of sensors (mea-
surements) may change this criterion. Thus, the resulting optimal
distribution is a uniform distribution or a near to uniform distri-
bution minimizing the computation time.

In the sequel, we compare the decentralized implementation
of Kalman/Lainiotis filters to the centralized implementation. Us-
ing (46) and (47) the theoretical parallelism speedup of each de-
centralized Kalman/Lainiotis algorithm is defined as the ratio of
the computational time required for its centralized implementation
by the computational time required for its decentralized imple-
mentation:

speedupth
TV = T C

TV

T D
TV

= BC
TV

B D
TV

, speedupth
TI = T C

TI

T D
TI

= BC
TI

B D
TI

speedupth
SS = T C

SS

T D
SS

= BC
SS

B D
SS

(60)

Thus, the optimal decentralized algorithms present the maximum
parallelism speedup, which is achieved minimizing the computa-
tional time required for the algorithm’s decentralized implementa-
tion. The maximum parallelism speedup increases as the measure-
ment vector dimension increases (and the state vector dimension
remains constant), for time varying, time invariant and steady state
systems. This is very important for multi-sensor problems. The op-
timal distribution leads to the maximum speedup, which is greater
than or equal to the maximum speedup of the optimal uniform
distribution; it is much greater when the number of measurements
m has a small number of dividers, especially when it is a prime
number (see in Section 7, Example 4).

Furthermore, in order to compare the optimal general (uniform
or non-uniform) distribution to the (real) optimal uniform distri-
bution we use the percent speedup gain:

% gain = 100 · speedupg − speedupu

speedupu (61)

where speedupg is the speedup achieved for the optimal general
(uniform or non-uniform) distribution and speedupu is the speedup
achieved for the optimal uniform distribution. The percent speedup
gain from optimal uniform distribution to optimal distribution for
n = 1, . . . ,100 and m = 1, . . . ,100 is presented in Table 3. Of
course, there is no speedup gain when the optimal distribution is
a uniform one. If this is not the case, then the maximum speedup
gain is very high.

Finally, in order to compare the optimal general (uniform or
non-uniform) distribution to the theoretical optimal uniform dis-
tribution we use the percent speedup efficiency:

% efficiency = 100 · speedupg

th
(62)
speedup
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Table 4
Percent speedup efficiency from optimal theoretical uniform to optimal general dis-
tribution.

System Average efficiency (%) Minimum efficiency (%)

Steady state 99.483 90.351
Time invariant 99.965 96.028
Time varying 99.855 87.841

Table 5
Optimal distributions (processors × measurements).

Distribution type Optimal ρopt Mopt Max speedup
distribution

Theoretical uniform 258.757 × 3.865 258.757 3.865 3.743297 · 106

Uniform 250 × 4 250 4 3.736932 · 106

General 250 × 4 250 4 3.736932 · 106

Table 6
Optimal distributions (processors × measurements).

Distribution type Number of distributions ρopt Mopt

Uniform 1 40 25
Near to uniform 22 42 24
Near to uniform 77 44 23
Near to uniform 77 46 22
Near to uniform 22 48 21
Uniform 1 50 20

where speedupg is the speedup achieved for the optimal gen-
eral (uniform or non-uniform) distribution and speedupth is the
speedup achieved for the theoretical optimal uniform distribu-
tion. The percent speedup efficiency from optimal theoretical uni-
form distribution to optimal distribution for n = 1, . . . ,100 and
m = 1, . . . ,100 is presented in Table 4. Of course, the speedup ef-
ficiency is 100% when the optimal distribution is a uniform one.
If this is not the case, then the average speedup efficiency is very
important.

7. Simulation results

In this section it is pointed out through simulation results that
the proposed optimal decentralized Kalman filter/Lainiotis filter
presents high parallelism speedup.

Example 1 (Time varying Kalman filter/Lainiotis filter). A typical
multi-sensor example taken from [21] is presented. A time varying
system with n = 1 and m = 1000 is considered. The optimal theo-
retical uniform distribution (processors × measurements) and the
real optimal distribution are shown in Table 5.

The optimal decentralized Kalman filter/Lainiotis filter is achie-
ved for the optimum uniform distribution: Mopt = 4 measurements
in each of ρopt = 250 local processors. The optimal decentralized
Kalman filter/Lainiotis filter presents a very high maximum paral-
lelism speedup: the optimal decentralized Kalman filter/Lainiotis
filter can be implemented 3.736932 · 106 times faster than the
centralized Kalman filter/Lainiotis filter. The speedup efficiency
is 99.830%.

Example 2 (Time invariant Kalman filter/Lainiotis filter). A typical
seismic deconvolution example taken from [36] is presented. The
time invariant wavelet used to describe the signal received by the
seismic sensors is assumed of order n = 4. A number of m = 1000
sensors divided into local geophone clusters are utilized in order
to capture the seismic trace. The optimal decentralized Kalman fil-
ter/Lainiotis filter arises for 200 different distributions, as shown
in Table 6.

The optimal distributions are 2 uniform distributions: Mopt = 25
measurements in each of Popt = 40 local processors and Mopt = 20
Table 7
Optimal distributions (processors × measurements).

Distribution type Optimal ρopt Mopt Max speedup
distribution

Theoretical uniform 44.721 × 22.360 44.721 22.360 8.297616
Uniform 40 × 25 40 25 8.280000
General 40 × 25 40 25 8.280000

Table 8
Optimal distributions (processors × measurements).

Distribution type Optimal ρopt Mopt Max speedup
distribution

Theoretical uniform 258.181 × 3.862 258.181 3.862 3.717816 · 106

Uniform 997 × 1 997 1 1.316193 · 106

General 247 × 4 + 3 × 3 250 4 3.703407 · 106

General 248 × 4 + 1 × 3 250 4 3.703407 · 106

+ 1 × 2
General 249 × 4 + 1 × 1 250 4 3.703407 · 106

measurements in each of Popt = 50 local processors and 198 near
to uniform distributions. In this case, we propose to determine
the optimum distribution using the criterion of minimizing the
number of processors (except of the criterion of minimizing the
computation time). This is reasonable since the hardware cost is
minimized.

The optimal theoretical uniform distribution (processors ×
measurements) and the real optimal distribution are shown in Ta-
ble 7.

The optimal decentralized Kalman filter/Lainiotis filter can be
implemented 8.280000 times faster than the centralized Kalman
filter/Lainiotis filter. This is achieved for all the above distributions.
The speedup efficiency is 99.788%.

Example 3 (Time varying Kalman filter/Lainiotis filter with prime num-
ber of measurements). In this example a time varying system is
assumed with scalar state and prime number of measurements:
n = 1 and m = 997 (prime number). The optimal theoretical uni-
form distribution (processors × measurements) and the real opti-
mal distributions are shown in Table 8.

The optimal decentralized Kalman filter/Lainiotis filter can be
implemented 3.703407 · 106 times faster than the centralized
Kalman filter/Lainiotis filter. This is achieved for 3 different near to
uniform distributions. The speedup gain is 181.373%. The speedup
efficiency is 99.612%.

8. Conclusions

Centralized and decentralized algorithms for the solution of the
discrete time estimation problem for multi-sensor environment
were presented. The discrete time centralized and decentralized
Kalman filters/Lainiotis filters were analyzed for time varying, time
invariant and steady state systems and their computational re-
quirements were discussed. A method was developed to define
the optimal decentralized Kalman and Lainiotis filters a priori (be-
fore the implementation of the filter). The method is based on the
determination of the optimum distribution of measurements into
parallel processors using the criterion of minimizing the compu-
tation time. The paper proposes the optimal distribution of mea-
surements into parallel processors. Thus we are able to design the
optimal sensor network choosing among equivalent (optimal) dis-
tributions. So we can design such an optimal network for a given
problem. On the other hand, if the sensor network is given, we
have to use the measurements distribution to this given sensor
network (which may be not the optimal one). In both cases, the
computation time depends on the maximum local measurement
vector dimension. Of course the decision of designing the optimal
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Table 9
Centralized time varying Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

F (k + 1,k)P (k/k) (n × n) · (n × n) 2n3 − n2

F (k + 1,k)P (k/k)F T (k + 1,k) (n × n) · (n × n) n3 + 0.5n2 − 0.5n
symmetric

W (k) ≡ F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k) (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

W −1(k) (n × n) (16n3 − 3n2 − n)/6
R−1(k + 1) (m × m) (16m3 − 3m2 − m)/6
H T (k + 1)R−1(k + 1) (n × m) · (m × m) 2nm2 − nm
H T (k + 1)R−1(k + 1)H(k + 1) (n × m) · (m × n) n2m + nm − 0.5n2 − 0.5n

symmetric
W −1(k) + H T (k + 1)R−1(k + 1)H(k + 1) (n × n) + (n × n) 0.5n2 + 0.5n

symmetric
P (k + 1/k + 1) = [W −1(k) + H T (k + 1)R−1(k + 1)H(k + 1)]−1 (n × n) (16n3 − 3n2 − n)/6
H T (k + 1)R−1(k + 1)z(k + 1) (n × m) · (m × 1) 2nm − n
W −1(k)F (k + 1,k) (n × n) · (n × n) 2n3 − n2

W −1(k)F (k + 1,k)x(k/k) (n × n) · (n × 1) 2n2 − n
H T (k + 1)R−1(k + 1)z(k + 1) + W −1(k)F (k + 1,k)x(k/k) (n × 1) + (n × 1) n
x(k + 1/k + 1) = P (k + 1/k + 1){H T (k + 1)R−1(k + 1)z(k + 1) + W −1(k)F (k + 1,k)x(k/k)} (n × n) · (n × 1) 2n2 − n

Total BC
TV = (31n3 + 6n2 − 7n)/3

+ (16m3 − 3m2 − m)/6
+ n2m + 2nm + 2nm2

Table 10
Centralized time invariant Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

F P (k/k) (n × n) · (n × n) 2n3 − n2

F P (k/k)F T (n × n) · (n × n) n3 + 0.5n2 − 0.5n
symmetric

W (k) ≡ F P (k/k)F T + Q (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

W −1(k) (n × n) (16n3 − 3n2 − n)/6
W −1(k) + H T R−1 H (n × n) + (n × n) 0.5n2 + 0.5n

symmetric
P (k + 1/k + 1) = [W −1(k) + H T R−1 H]−1 (n × n) (16n3 − 3n2 − n)/6
H T R−1 z(k + 1) (n × m) · (m × 1) 2nm − n
W −1(k)F (n × n) · (n × n) 2n3 − n2

W −1(k)F x(k/k) (n × n) · (n × 1) 2n2 − n
H T R−1 z(k + 1) + W −1(k)F x(k/k) (n × 1) + (n × 1) n
x(k + 1/k + 1) = P (k + 1/k + 1){H T R−1 z(k + 1) + W −1(k)F x(k/k)} (n × n) · (n × 1) 2n2 − n

Total BC
TI = 2nm + (62n3 + 15n2 − 11n)/6
sensor network or reclaiming a given (not surely optimal) sensor
network depends on the corresponding costs. The resulting opti-
mal Kalman/Lainiotis filters require uniform distribution or near to
uniform distribution of measurements into parallel processors. The
optimal uniform distribution has the advantages of elimination of
idle time for the local processors and of low hardware cost, but
it is not always applicable. The optimal filters present high paral-
lelism speedup; this is verified through simulation results and is
very important due to the fact that, in most real-time applications,
it is essential to obtain the estimate in the shortest possible time.
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Appendix A. Centralized time varying Kalman filter/Lainiotis
filter

In (13) substituting the matrices P (k + 1/k), K (k + 1) by (10),
(11), respectively, and using the matrix inversion lemma1 (24) is
derived:

1 (A + BC D)−1 = A−1 − A−1 B(C−1 + D A−1 B)−1 D A−1.
Table 11
Centralized steady state Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

Assx(k/k) (n × n) · (n × 1) 2n2 − n
Bss z(k + 1) (n × m) · (m × 1) 2nm − n
x(k + 1/k + 1) (n × 1) + (n × 1) n

= Assx(k/k) + Bss z(k + 1)

Total BC
SS = 2n2 + 2nm − n

P (k + 1/k + 1) = {[
F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k)

]−1

+ H T (k + 1)R−1(k + 1)H(k + 1)
}−1

which can be formulated as

P (k + 1/k + 1)

= [
P−1(k + 1/k) + H T (k + 1)R−1(k + 1)H(k + 1)

]−1
(A.1)

due to (10).
The vector x(k + 1/k + 1) in (12) can be written as

x(k + 1/k + 1) = x(k + 1/k) − K (k + 1)H(k + 1)x(k + 1/k)

+ K (k + 1)z(k + 1)

and substituting in the last equation the quantities x(k + 1/k),
K (k + 1) by (9) and (11) we derive:
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Table 12
Decentralized time varying Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

Local level
R−1

i (k + 1) (M × M) (16M3 − 3M2 − M)/6

H T
i (k + 1)R−1

i (k + 1) (n × M) · (M × M) 2nM2 − nM
Bi(k + 1) = H T

i (k + 1)R−1
i (k + 1)Hi(k + 1) (n × M) · (M × n) n2 M + nM − 0.5n2 − 0.5n

symmetric
bi(k + 1) = H T

i (k + 1)R−1
i (k + 1)zi(k + 1) (n × M) · (M × 1) 2nM − n

Central level
F (k + 1,k)P (k/k) (n × n) · (n × n) 2n3 − n2

F (k + 1,k)P (k/k)F T (k + 1,k) (n × n) · (n × n) n3 + 0.5n2 − 0.5n
symmetric

W (k) ≡ F (k + 1,k)P (k/k)F T (k + 1,k) + Q (k) (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

W −1(k) (n × n) (16n3 − 3n2 − n)/6∑ρ
i=1 Bi(k + 1) (n × n) + · · · + (n × n) (0.5n2 + 0.5n)(ρ − 1)

symmetric
W −1(k) + ∑ρ

i=1 Bi(k + 1) (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

P (k + 1/k + 1) = [W −1(k) + ∑ρ
i=1 Bi(k + 1)]−1 (n × n) (16n3 − 3n2 − n)/6∑ρ

i=1 bi(k + 1) (n × 1) + · · · + (n × 1) n(ρ − 1)

W −1(k)F (k + 1,k) (n × n) · (n × n) 2n3 − n2

W −1(k)F (k + 1,k)x(k/k) (n × n) · (n × 1) 2n2 − n∑ρ
i=1 bi(k + 1) + W −1(k)F (k + 1,k)x(k/k) (n × 1) + (n × 1) n

x(k + 1/k + 1)

= P (k + 1/k + 1){∑ρ
i=1 bi(k + 1) + W −1(k)F (k + 1,k)x(k/k)} (n × n) · (n × 1) 2n2 − n

Total B D
TV = (62n3 + 9n2 − 23n)/6

+ (16M3 − 3M2 − M)/6 + n2 M
+ 2nM + 2nM2 + (n2 + 3n)ρ/2

Table 13
Decentralized time invariant Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

Local level
bi(k + 1) = H T

i R−1
i zi(k + 1) (n × M) · (M × 1) 2nM − n

Central level
F P (k/k) (n × n) · (n × n) 2n3 − n2

F P (k/k)F T (n × n) · (n × n) n3 + 0.5n2 − 0.5n
symmetric

W (k) ≡ F P (k/k)F T + Q (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

W −1(k) (n × n) (16n3 − 3n2 − n)/6
W −1(k) + ∑ρ

i=1 Bi (n × n) + (n × n) 0.5n2 + 0.5n
symmetric

P (k + 1/k + 1) = [W −1(k) + ∑ρ
i=1 Bi ]−1 (n × n) (16n3 − 3n2 − n)/6∑ρ

i=1 bi(k + 1) (n × 1) + · · · + (n × 1) n(ρ − 1)

W −1(k)F (n × n) · (n × n) 2n3 − n2

W −1(k)F x(k/k) (n × n) · (n × 1) 2n2 − n∑ρ
i=1 bi(k + 1) + W −1(k)F x(k/k) (n × 1) + (n × 1) n

x(k + 1/k + 1) = P (k + 1/k + 1){∑ρ
i=1 bi(k + 1) + W −1(k)F x(k/k)} (n × n) · (n × 1) 2n2 − n

Total B D
TI = 2nM + nρ + (62n3 + 15n2 − 17n)/6

Table 14
Decentralized steady state Kalman filter/Lainiotis filter.

Matrix operation Matrix dimensions Calculation burden

Local level
di(k + 1) = P e H T

i R−1
i zi(k + 1) (n × M) · (M × 1) 2nM − n

Central level∑ρ
i=1 di(k + 1) (n × 1) + · · · + (n × 1) n(ρ − 1)

Assx(k/k) (n × n) · (n × 1) 2n2 − n
x(k + 1/k + 1) = Assx(k/k) + ∑ρ

i=1 di(k + 1) (n × 1) + (n × 1) n

Total B D
SS = 2n2 − 2n + 2nM + nρ
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x(k + 1/k + 1)

= F (k + 1,k)x(k/k) − P (k + 1/k)H T (k + 1)

× [
H(k + 1)P (k + 1/k)H T (k + 1) + R(k + 1)

]−1

× H(k + 1)F (k + 1,k)x(k/k) + P (k + 1/k)H T (k + 1)

× [
H(k + 1)P (k + 1/k)H T (k + 1) + R(k + 1)

]−1
z(k + 1)

= P (k + 1/k)P−1(k + 1/k)F (k + 1,k)x(k/k)

− P (k + 1/k)H T (k + 1)
[

H(k + 1)P (k + 1/k)H T (k + 1)

+ R(k + 1)
]−1

H(k + 1)P (k + 1/k)P−1(k + 1/k)

× F (k + 1,k)x(k/k) + P (k + 1/k)H T (k + 1)

× [
H(k + 1)P (k + 1/k)H T (k + 1) + R(k + 1)

]−1
z(k + 1)

= {
P (k + 1/k) − P (k + 1/k)H T (k + 1)

[
H(k + 1)P (k + 1/k)

× H T (k + 1) + R(k + 1)
]−1

H(k + 1)P (k + 1/k)
}

× P−1(k + 1/k)F (k + 1,k)x(k/k) + P (k + 1/k)H T (k + 1)

× [
H(k + 1)P (k + 1/k)H T (k + 1) + R(k + 1)

]−1
z(k + 1)

(A.2)

Using the matrix inversion lemma and (A.1) the last equation
gives:

x(k + 1/k + 1)

= [
P−1(k + 1/k) + H T (k + 1)R−1(k + 1)H(k + 1)

]−1

× P−1(k + 1/k)F (k + 1,k)x(k/k) + P (k + 1/k)H T (k + 1)

× [
H(k + 1)P (k + 1/k)H T (k + 1) + R(k + 1)

]−1
z(k + 1)

= P (k + 1/k + 1)P−1(k + 1/k)F (k + 1,k)x(k/k)

+ P (k + 1/k)H T (k + 1)
[

H(k + 1)P (k + 1/k)H T (k + 1)

+ R(k + 1)
]−1

z(k + 1) (A.3)

Moreover, the non-singularity of the matrices R(k + 1), P (k + 1/k)

and (A.1) allow us to write:

P (k + 1/k)H T (k + 1)
[

H(k + 1)P (k + 1/k)H T (k + 1)

+ R(k + 1)
]−1

= [
H T (k + 1)R−1(k + 1)H(k + 1) + P−1(k + 1/k)

]−1

× H T (k + 1)R−1(k + 1)

= P (k + 1/k + 1)H T (k + 1)R−1(k + 1) (A.4)

By (A.4) Eq. (A.3) is written

x(k + 1/k + 1) = P (k + 1/k + 1)P−1(k + 1/k)F (k + 1,k)x(k/k)

+ P (k + 1/k + 1)H T (k + 1)R−1(k + 1)z(k + 1)

= P (k + 1/k + 1)
{

P−1(k + 1/k)F (k + 1,k)x(k/k)

+ H T (k + 1)R−1(k + 1)z(k + 1)
}

and by (10) the proof of (25) is complete.

Appendix B. Per recursion calculation burdens of
Kalman/Lainiotis filters

The calculation burden BC
TV of centralized time varying Kalman

filter/Lainiotis filter is computed by (24)–(25) and shown in Ta-
ble 9.
The calculation burden BC
TI of centralized time invariant Kalman

filter/Lainiotis filter is computed by (26)–(27) and shown in Ta-
ble 10.

The calculation burden BC
SS of centralized steady state Kalman

filter/Lainiotis filter is computed by (31) and shown in Table 11.
The calculation burden B D

TV of decentralized time varying
Kalman filter/Lainiotis filter includes the burden of local level
computed by (36)–(37) and the burden of central level computed
by (38)–(39) and is shown in Table 12.

The calculation burden B D
TI of decentralized time invariant

Kalman filter/Lainiotis filter includes the burden of local level
computed by (40) and the burden of central level computed
by (41)–(42) and is shown in Table 13.

The calculation burden B D
SS of decentralized steady state Kalman

filter/Lainiotis filter includes the burden of local level computed
by (44) and the burden of central level computed by (45) and is
shown in Table 14.
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